Lecture 11
2022/2023
Microwave Devices and Circuits
for Radiocommunications

2022/2023

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 12-14, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2022/2023

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II. 13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 21.02.2022)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

© Laboratorul de Microunde si Op: $\times+$
 $\leftarrow \rightarrow$ C (i) Not secure | rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0
 Main Courses Master Staff Research Students Admin
 Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational soffware

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Enrollment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:
Evaluation
Type: Examen
A: 50%, (Test/Colloquium)
B: 25\%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
*林English I D Romana I

Grades

Aggregate Results
Attendance
Course
Laboratory.
Lists
Bonus-uri acumulate (final). Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, ma
MDCR Lecture 2 (pdf, 3.67 MB , en,
MDCR Lecture 3 (pdf, 4.76 MB , en
MDCR Lecture 4 (pdf, 5.58 MB, en, 2)

Online Exams

In order to participate at online exams you must get ready following

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Access

Not customized

Acceseaza ca acest student

Nume

Note obtimate

Disciplina	Tip	Data	Descriere	Nota	Puncte	Obs.
TW	Tehnologii Web					
	N	$17 / 01 / 2014$	Nota finala	10	-	
	A	$17 / 01 / 2014$	Colocviu Tehnologii Web 2013/2014	10	7.55	
	B	$17 / 01 / 2014$	Laborator Tehnologii Web 2013/2014	9	-	
	D	$17 / 01 / 2014$	Tema Tehnologii Web 2013/2014	9	-	

Online

- access to online exams requires the password received by email

Online

- access email/password

Main	Courses	Master	Staff	Resear
Grades	Student List	Exams	Photos	
POPESCU GOPO ION				
Fotografia nu exista		Date:		
		Grupa	5700 (2019/2020)	
		Specializarea	Inginerie electronica sitelec	
		Marca	7000000	

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line ($p d f, 2.65$ yB, ro, II) Simulare Examen (video) (mp4, 65) 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)
-

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for cc

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Sixam	net		Reminem																		
					${ }^{\frac{85}{585} 5}$	14833	15588	20212	18935	1809	3029	1 15．19	79.9	${ }^{37}$	689						
溉		$\frac{5}{50}$		$\frac{85}{\frac{85}{522} .}$		2587	1355	${ }^{3,464}$	3579	5558	22212	10.6	。	。		。					
		$\underbrace{\substack{\text { cise }}}_{\text {cose }}$					－	\bigcirc	。	－	\bigcirc	\bigcirc		－							
既						s0	so	50	50	50	50	50									
						${ }_{18602}$	150.5	${ }_{1828} 18$	1335	92.12	121.6	14.48		35.19							
	$\frac{85}{\substack{\text { sicis．} \\ 2020}}$	$\xrightarrow{\frac{8}{\text { che }} \text { S．}}$			${ }_{\text {cosem }}^{\text {che }}$	1122	80． 8	202	1008	135.	1837	157.6									
										${ }^{7271}$				36.1							
							1225		${ }^{323}$	5436											
													2.05	33.6							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submissionRecap

General theory
Microwave Network Analysis

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance Matching
The Smith Chart

The Smith Chart

Impedance matching
Impedance Matching with lumped elements (L Networks)

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The Smith Chart, reflection coefficient, impedance matching

The Smith Chart, matching, $Z_{L}=Z_{o}$

0 The source (eg. the transistor) having Z_{X} needs to see a certain reflection coefficient Γ_{L} towards the load $Z_{\text {。 }}$
The matching circuit must move the point denoting the reflection coefficient in the area where for a $Z_{\text {o }}$ load ($\Gamma_{0}=0$) we see towards it:
$\Gamma=\Gamma_{L}$ perfect match
$\left|\Gamma-\Gamma_{L}\right| \leq \Gamma_{m}$ "good enough" match

The Smith Chart, matching ,

$Z_{L} \neq Z_{0} Z_{L}=Z_{0}$

- The matching sections needed to move
- $\Gamma_{\mathrm{L}} \mathrm{in} \Gamma_{\mathrm{o}}$
- Γ_{0} in Γ_{L}
- are identical. They differ only by the order in which the elements are introduced into the matching circuit
- As a result, we can use in match design the same:
" methods
- formulae

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Case 1, Shunt Stub

- Shunt Stub

Analytical solution, usage

$\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|$
$\Gamma_{s}=0.593 \angle 46.85^{\circ}$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\bar{\mp} 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ}$

$$
\cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
" "+" solution \downarrow

$$
\begin{align*}
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S} \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ}
\end{align*}
$$

" "-" solution \downarrow

$$
\left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ}
$$

$$
\operatorname{Im} y_{S}=\frac{+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ}
$$

Microwave Amplifiers

Power / Matching

- Two ports in which matching influences the power transfer

Microwave Filters

Assignment

- this structure is frequently encountered in radiocommunication systems

Insertion loss method

$$
P_{L R}=\frac{P_{S}}{P_{L}}=\frac{1}{1-|\Gamma(\omega)|^{2}}
$$

- $|\Gamma(\omega)|^{2}$ is an even function of ω

$$
\begin{aligned}
& |\Gamma(\omega)|^{2}=\frac{M\left(\omega^{2}\right)}{M\left(\omega^{2}\right)+N\left(\omega^{2}\right)} \\
& P_{L R}=1+\frac{M\left(\omega^{2}\right)}{N\left(\omega^{2}\right)}
\end{aligned}
$$

- Choosing M and N polynomials appropriately leads to a filter with a completely specified frequency response

Insertion loss method

- We control the power loss ratio/attenuation introduced by the filter:
- in the passband (pass all frequencies)
- in the stopband (reject all frequencies)

© John Wiley \& Sons, Inc. All rights reserved.

Filter specifications

- Attenuation
- in passband
- in stopband
- most often in dB
- Frequency range
- passband
- stopband
- cutoff frequency $\omega_{1}{ }^{\prime}$ usually normalized
 (= 1)

Insertion loss method

- We choose the right polynomials to design an low-pass filter (prototype)
- The low-pass prototype are then converted to the desired other types of filters
- low-pass, high-pass, bandpass, or bandstop

Maximally Flat/Equal ripple LPF Prototype

Maximally flat filter prototypes

Prototype Filters

(b)

Prototype Filters

- Prototype filters are:
- Low-Pass Filters (LPF)
- cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right)$
- connected to a source with $\mathrm{R}=1 \Omega$
- The number of reactive elements (L/C) is the order of the filter (N)
- Reactive elements are alternated: series L / shunt C
- There two prototypes with the same response, a prototype beginning with a shunt C element, and a prototype beginning with a series L element

Maximally Flat LPF Prototype

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes $\left(g_{0}=1\right.$, $\omega_{c}=1, N=1$ to 10)

\boldsymbol{N}	$\boldsymbol{g}_{\mathbf{1}}$	$\boldsymbol{g}_{\mathbf{2}}$	$\boldsymbol{g}_{\mathbf{3}}$	$\boldsymbol{g}_{\mathbf{4}}$	$\boldsymbol{g}_{\mathbf{5}}$	$\boldsymbol{g}_{\mathbf{6}}$	$\boldsymbol{g}_{\mathbf{7}}$	$\boldsymbol{g}_{\mathbf{8}}$	$\boldsymbol{g}_{\mathbf{9}}$	$\boldsymbol{g}_{\mathbf{1 0}}$	$\boldsymbol{g}_{\mathbf{1 1}}$
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

[^0]
Example

- Design a 3rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz . The fractional bandwidth of the passband should be 10\%, and the impedance 50Ω.

LPF Prototype

- 0.5 dB equal-ripple table or design formulas:
- $\mathrm{g} 1=1.5963=\mathrm{L}_{1} / \mathrm{C}_{3}$,
- $\mathrm{g} 2=1.0967=\mathrm{C} 2 / \mathrm{L} 4$,
- $93=1.5963=L_{3} / C_{5}$,
- $94=1.000=R_{L}$

LPF Prototype

$-\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=\omega_{0} / 2 \pi=0.159 \mathrm{~Hz}\right)$

Continue

Impedance and Frequency Scaling

- After computing prototype filter's elements:
- Low-Pass Filters (LPF)
- cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right)$
- connected to a source with $\mathrm{R}=1 \Omega$
- component values can be scaled in terms of impedance and frequency

Impedance and Frequency Scaling

- LPF Prototype is only used as an intermediate step
- Low-Pass Filter (LPF)
" cutoff frequency $\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=0.159 \mathrm{~Hz}\right.$)
- connected to a source with $R=1 \Omega$

Figure 8.23
© John Wiley \& Sons, Inc. All rights reserved.

Impedance Scaling

To design a filter which will work with a source resistance of R_{0} we multiplying all the impedances of the prototype design by R_{o} (" ' " denotes scaled values)

$$
\begin{array}{ll}
R_{s}^{\prime}=R_{0} \cdot\left(R_{s}=1\right) & R_{L}^{\prime}=R_{0} \cdot R_{L} \\
L^{\prime}=R_{0} \cdot L & C^{\prime}=\frac{C}{R_{0}}
\end{array}
$$

Frequency Scaling

- changing the cutoff frequency - (fig. b)
- changing the type (for example LPF \rightarrow HPF fig. c) requires also conversion

Frequency Scaling

To change the cutoff frequency of a low-pass prototype from unity to ω_{c} we apply a variable substitution

$$
\omega \leftarrow \frac{\omega}{\omega_{c}}
$$

Frequency Scaling

- To change the cutoff frequency of a low-pass prototype we apply a variable substitution:

$$
\omega \leftarrow \frac{\omega}{\omega_{c}}
$$

- Equivalent to the widening of the power loss filter response

$$
P_{L R}^{\prime}(\omega)=P_{L R}\left(\frac{\omega}{\omega_{c}}\right)
$$

$j \cdot X_{k}=j \cdot \frac{\omega}{\omega_{c}} \cdot L_{k}=j \cdot \omega \cdot L_{k}^{\prime} \quad j \cdot B_{k}=j \cdot \frac{\omega}{\omega_{c}} \cdot C_{k}=j \cdot \omega \cdot C_{k}^{\prime}$

Frequency Scaling LPF \rightarrow LPF

- New element values for frequency scaling:

$$
L_{k}^{\prime}=\frac{L_{k}}{\omega_{c}} \quad C_{k}^{\prime}=\frac{C_{k}}{\omega_{c}}
$$

- When both impedance and frequency scaling are required:

$$
L_{k}^{\prime}=\frac{R_{0} \cdot L_{k}}{\omega_{c}} \quad C_{k}^{\prime}=\frac{C_{k}}{R_{0} \cdot \omega_{c}}
$$

Low-pass to high-pass transformation LPF \rightarrow HPF

- Variable substitution for LPF \rightarrow HPF:

$$
\omega \leftarrow-\frac{\omega_{c}}{\omega}
$$

High-pass transformation LPF \rightarrow HPF

- Variable substitution for LPF \rightarrow HPF :

$$
\begin{gathered}
\omega \leftarrow-\frac{\omega_{c}}{\omega} \\
j \cdot X_{k}=-j \cdot \frac{\omega_{c}}{\omega} \cdot L_{k}=\frac{1}{j \cdot \omega \cdot C_{k}^{\prime}} \quad j \cdot B_{k}=-j \cdot \frac{\omega_{c}}{\omega} \cdot C_{k}=\frac{1}{j \cdot \omega \cdot L_{k}^{\prime}}
\end{gathered}
$$

- Impedance scaling can be included

$$
C_{k}^{\prime}=\frac{1}{R_{0} \cdot \omega_{c} \cdot L_{k}} \quad L_{k}^{\prime}=\frac{R_{0}}{\omega_{c} \cdot C_{k}}
$$

- In the schematic series inductors must be replaced with series capacitors, and shunt capacitors must be replaced with shunt inductors

Bandpass Transformation LPF \rightarrow BPF

- Variable substitution for LPF \rightarrow BPF:

$$
\omega \leftarrow \frac{\omega_{0}}{\omega_{2}-\omega_{1}}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

- where we use the fractional bandwidth of the passband and the center frequency

$$
\Delta=\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \quad \omega_{0}=\sqrt{\omega_{1} \cdot \omega_{2}}
$$

Bandpass Transformation LPF \rightarrow BPF

$$
\begin{aligned}
& \omega=\omega_{0} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right)=0 \quad \omega=-\omega_{0} \rightarrow \frac{1}{\Delta}\left(\frac{-\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{-\omega_{0}}\right)=0 \\
& \omega=\omega_{1} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{0} \cdot \omega_{1}}\right)=-1 \\
& \omega=\omega_{2} \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)=\frac{1}{\Delta}\left(\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{0} \cdot \omega_{2}}\right)=1 \\
&
\end{aligned}
$$

Bandpass Transformation LPF \rightarrow BPF

$$
\begin{gathered}
j \cdot X_{k}=\frac{j}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \cdot L_{k}=j \cdot \frac{\omega \cdot L_{k}}{\Delta \cdot \omega_{0}}-j \cdot \frac{\omega_{0} \cdot L_{k}}{\Delta \cdot \omega}=j \cdot \omega \cdot L_{k}^{\prime}-j \frac{1}{\omega \cdot C_{k}^{\prime}} \\
j \cdot B_{k}=\frac{j}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \cdot C_{k}=j \cdot \frac{\omega \cdot C_{k}}{\Delta \cdot \omega_{0}}-j \cdot \frac{\omega_{0} \cdot C_{k}}{\Delta \cdot \omega}=j \cdot \omega \cdot C_{k}^{\prime}-j \frac{1}{\omega \cdot L_{k}^{\prime}}
\end{gathered}
$$

- A series inductor in the prototype filter is transformed to a series LC circuit in series

$$
L_{k}^{\prime}=\frac{L_{k}}{\Delta \cdot \omega_{0}} \quad C_{k}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{k}}
$$

- A shunt capacitor in the prototype filter is transformed to a shunt LC circuit in parallel

$$
L_{k}^{\prime}=\frac{\Delta}{C_{k} \cdot \omega_{0}} \quad C_{k}^{\prime}=\frac{C_{k}}{\omega_{0} \cdot \Delta}
$$

Bandstop Transformation LPF \rightarrow BSF

$$
\omega \leftarrow-\Delta \cdot\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1} \quad \omega=\omega_{0} \rightarrow \frac{-\Delta}{\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}=\frac{-\Delta}{\left(\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right)} \rightarrow \pm \infty
$$

(a)

Bandstop Transformation LPF \rightarrow BSF

$$
\omega \leftarrow-\Delta \cdot\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}
$$

- A series inductor in the prototype filter is transformed to a shunt LC circuit in series

$$
L_{k}^{\prime}=\frac{\Delta \cdot L_{k}}{\omega_{0}} \quad C_{k}^{\prime}=\frac{1}{\omega_{0} \cdot \Delta \cdot L_{k}}
$$

- A shunt capacitor in the prototype filter is transformed to a series LC circuit in parallel

$$
L_{k}^{\prime}=\frac{1}{\Delta \cdot \omega_{0} \cdot C_{k}} \quad C_{k}^{\prime}=\frac{\Delta \cdot C_{k}}{\omega_{0}}
$$

Summary of Prototype Filter Transformations

Example

- Design a 3 rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz . The fractional bandwidth of the passband should be 10%, and the impedance 50Ω.

$$
\begin{aligned}
& \omega_{0}=\pi \cdot \pi \mathrm{GHz}=6.283 \cdot 10^{9} \mathrm{rad} / \mathrm{s} \\
& \Delta=0.1
\end{aligned}
$$

LPF Prototype

- 0.5 dB equal-ripple table or design formulas:
- $\mathrm{g} 1=1.5963=\mathrm{L}_{1} / \mathrm{C}_{3}$,
- $\mathrm{g} 2=1.0967=\mathrm{C} 2 / \mathrm{L} 4$,
- $93=1.5963=L_{3} / C_{5}$,
- $94=1.000=R_{L}$

LPF Prototype

$-\omega_{0}=1 \mathrm{rad} / \mathrm{s}\left(\mathrm{f}_{\mathrm{o}}=\omega_{0} / 2 \pi=0.159 \mathrm{~Hz}\right)$

Bandpass Transformation / BPF

$$
\begin{array}{cl}
\omega_{0}=2 \cdot \pi \cdot 1 G H z=6.283 \cdot 10^{9} \mathrm{rad} / \mathrm{s} & \Delta=\frac{\Delta \omega}{\omega_{0}}=\frac{\Delta f}{f_{0}}=0.1 \quad R_{0}=50 \Omega \\
\mathrm{~g} 1=1.5963=\mathrm{L} 1, & \mathrm{~g} 3=1.5963=\mathrm{L}_{3}, \\
\mathrm{~g} 2=1.0967=\mathrm{C} 2, & \mathrm{~g} 4=1.000=\mathrm{R}_{\mathrm{L}} \\
L_{1}^{\prime}=\frac{L_{1} \cdot R_{0}}{\Delta \cdot \omega_{0}}=127.0 \mathrm{nH} & C_{1}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{1} \cdot R_{0}}=0.199 \mathrm{pF} \\
L_{2}^{\prime}=\frac{\Delta \cdot R_{0}}{\omega_{0} \cdot C_{2}}=0.726 \mathrm{nH} & C_{2}^{\prime}=\frac{C_{2}}{\Delta \cdot \omega_{0} \cdot R_{0}}=34.91 \mathrm{pF} \\
L_{3}^{\prime}=\frac{L_{3} \cdot R_{0}}{\Delta \cdot \omega_{0}}=127.0 \mathrm{nH} & C_{3}^{\prime}=\frac{\Delta}{\omega_{0} \cdot L_{3} \cdot R_{0}}=0.199 \mathrm{pF}
\end{array}
$$

ADS

Microwave Filters Implementation

Microwave Filters Implementation

- The lumped-element (L, C) filter design generally works well only at low frequencies (RF):
- lumped-element inductors and capacitors are generally available only for a limited range of values, and can be difficult to implement at microwave frequencies
- difficulty to obtain the (very low) required tolerance for elements

Filter specifications

Richards' Transformation

- Impedance seen at the input of a line loaded with Z_{L}

$$
Z_{\text {in }}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

- We prefer the load impedance to be:
- open circuit $\left(Z_{\mathrm{L}}=\infty\right) \quad Z_{i n, o c}=-j \cdot Z_{0} \cdot \cot \beta \cdot l$
- short circuit $\left(Z_{\mathrm{L}}=0\right) \quad Z_{i n, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l$
- Input impedance is:
- capacitive $\quad Z_{i n, o c}=j \cdot X_{C}=\frac{1}{j \cdot B_{C}} \quad Z_{0} \leftrightarrow \frac{1}{C} \quad \tan \beta \cdot l \leftrightarrow \omega$
- inductive

$$
Z_{i n, s c}=j \cdot X_{L} \quad Z_{0} \leftrightarrow L \quad \tan \beta \cdot l \leftrightarrow \omega
$$

Richards' Transformation

- Variable substitution

$$
\Omega=\tan \beta \cdot l=\tan \left(\frac{\omega \cdot l}{v_{p}}\right)
$$

- With this variable substitution we define:
- reactance of an inductor

$$
j \cdot X_{L}=j \cdot \Omega \cdot L=j \cdot L \cdot \tan \beta \cdot l
$$

- susceptance of a capacitor

$$
j \cdot B_{C}=j \cdot \Omega \cdot C=j \cdot C \cdot \tan \beta \cdot l
$$

- The equivalent filter in Ω has a cutoff frequency at:

$$
\Omega=1=\tan \beta \cdot l \rightarrow \beta \cdot l=\frac{\pi}{4} \quad \rightarrow \quad l=\frac{\lambda}{8}
$$

Richards' Transformation

- allows implementation of the inductors and capacitors with lines after the transformation of the LPF prototype to the required type (LPF/HPF/BPF/BSF)

Richards' Transformation

- By choosing the open-circuited or short-circuited lines to be $\lambda / 8$ at the desired cutoff frequency $\left(\omega_{c}\right)$ and the corresponding characteristic impedances (L/C from LPF prototype) we will obtain at frequencies around ω_{c} a behavior similar to that of the prototype filter.
" At frequencies far from ω_{c} the behavior of the filter will no longer be identical to that of the prototype (in specific situations the correct behavior must be verified)
- Frequency scaling is simplified: choosing the appropriate physical length of the line to have the electrical length $\lambda / 8$ at the desired cutoff frequency
- All lines will have equal electrical lengths ($\lambda / 8$) and thus comparable physical lengths, so the lines are called commensurate lines

Richards' Transformation

- At the frequency $\omega=2 \cdot \omega_{c}$ the lines will be $\lambda / 4$ long

$$
l=\frac{\lambda}{4} \Rightarrow \beta \cdot l=\frac{\pi}{2} \Rightarrow \tan \beta \cdot l \rightarrow \infty
$$

- an supplemental attenuation pole will occur at $2 \cdot \omega_{c}$ (LPF):
- inductances (usually in series) $Z_{i n, s c}=j \cdot Z_{0} \cdot \tan \beta \cdot l \rightarrow \infty$
- capacitances (usually shunt) $\quad Z_{i n, o c}=-j \cdot Z_{0} \cdot \cot \beta \cdot l \rightarrow 0$

Richards' Transformation

- the periodicity of tan function implies the periodicity of the filter implemented with lines
- the filter response will be repeated every $4 \cdot \omega_{c}$

$$
\tan (\alpha+\pi)=\tan \alpha
$$

$$
\begin{aligned}
& \left.\beta \cdot l\right|_{\omega=\omega_{c}}=\frac{\pi}{4} \Rightarrow \frac{\omega_{c} \cdot l}{v_{p}}=\frac{\pi}{4} \Rightarrow \pi=\frac{\left(4 \cdot \omega_{c}\right) \cdot l}{v_{p}} \\
& Z_{i n}(\omega)=Z_{i n}\left(\omega+4 \cdot \omega_{c}\right) \Rightarrow P_{L R}(\omega)=P_{L R}\left(\omega+4 \cdot \omega_{c}\right) \\
& P_{L R}\left(4 \cdot \omega_{c}\right)=P_{L R}(0) \quad P_{L R}\left(3 \cdot \omega_{c}\right)=P_{L R}\left(-\omega_{c}\right) \quad P_{L R}\left(5 \cdot \omega_{c}\right)=P_{L R}\left(\omega_{c}\right)
\end{aligned}
$$

Example

- Low-pass filter $4^{\text {th }}$ order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
- $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C}_{2}$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $94=0.7654=C_{4}$
- g5 = 1 (does not need supplemental impedance matching - required only for even order equal-ripple filters)

LPF Prototype

Lumped elements

$$
\begin{array}{ll}
\omega_{c}=2 \cdot \pi \cdot 4 \mathrm{GHz}=2.5133 \cdot 10^{10} \mathrm{rad} / \mathrm{s} \\
\mathrm{~g} 1=0.7654=\mathrm{L} 1, & \mathrm{~g} 3=1.8478=\mathrm{L}_{3}, \\
\mathrm{~g} 2=1.8478=\mathrm{C} 2, & \mathrm{~g} 4=0.7654=\mathrm{C} 4, \\
& \mathrm{~g} 5=1=\mathrm{RL}
\end{array}
$$

$$
\begin{array}{ll}
L_{1}^{\prime}=\frac{R_{0} \cdot L_{1}}{\omega_{c}}=1.523 \mathrm{nH} & C_{2}^{\prime}=\frac{C_{2}}{R_{0} \cdot \omega_{c}}=1.470 \mathrm{pF} \\
L_{3}^{\prime}=\frac{R_{0} \cdot L_{3}}{\omega_{c}}=3.676 \mathrm{nH} & C_{4}^{\prime}=\frac{C_{4}}{R_{0} \cdot \omega_{c}}=0.609 \mathrm{pF}
\end{array}
$$

Lumped elements - ADS

Richards' Transformation

- LPF Prototype parameters:
- $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C} 2$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $\mathrm{g}_{4}=0.7654=\mathrm{C}_{4}$
- Normalized line impedances
- z1 = $0.7654=$ series / short circuit

$$
Z_{0} \leftrightarrow \frac{1}{C}
$$

- $z 2=1 / 1.8478=0.5412=$ shunt $/$ open circuit
- z3 $=1.8478=$ series $/$ short circuit
$Z_{0} \leftrightarrow L$
- $\mathrm{z4}=1$ / $0.7654=1.3065=$ shunt / open circuit
- Impedance scaling by multiplying with $\mathrm{Zo}=50 \Omega$
- All lines must have the length equal to $\lambda / 8$ (electrical length $\mathrm{E}=45^{\circ}$) at 4 GHz

Richards' Transformation - ADS

Richards' Transformation

- Filters implemented with Richards' Transformation
- beneficiate from the supplemental pole at $2 \cdot \omega_{c}$
- have the major disadvantage of frequency periodicity, a supplemental non-periodic LPF must be inserted if needed

Equal-ripple prototype

- For even N order of the filter ($N=2,4,6,8 \ldots$) equal-ripple filters must closed by a nonstandard load impedance $\mathrm{g}_{\mathrm{N}+1} \neq 1$
- If the application doesn't allow this, supplemental impedance matching is required (quarter-wave transformer, binomial ...) to $\mathrm{g}_{\mathrm{L}}=1$

$$
g_{N+1} \neq 1 \rightarrow R \neq R_{0} \quad(50 \Omega)
$$

Observation: even order equal-ripple

- Same filter, 3 dB equal-ripple
- 3dB equal-ripple tables or formulas:

$$
\begin{aligned}
\mathrm{g} 1 & =3.4389=\mathrm{L} 1 \\
\mathrm{~g} 2 & =0.7483=\mathrm{C}_{2} \\
\mathrm{~g} & =4.3471=\mathrm{L} \\
\mathrm{~g} 4 & =0.5920=\mathrm{C}_{4} \\
\mathrm{~g} 5 & =5.8095=\mathrm{R}_{\mathrm{L}}
\end{aligned}
$$

- Line impedances
- $\mathrm{Z}_{1}=3.4389 \cdot 50 \Omega=171.945 \Omega=$ series $/$ short circuit
- $Z 2=50 \Omega / 0.7483=66.818 \Omega=$ shunt $/$ open circuit
- $Z_{3}=4.3471 \cdot 50 \Omega=217.355 \Omega=$ series $/$ short circuit
- $Z_{4}=50 \Omega / 0.5920=84.459 \Omega=$ shunt $/$ open circuit
- $\mathrm{RL}=5.8095 \cdot 50 \Omega=295.475 \Omega=$ load

Even order equal-ripple - ADS

Observation: even order equal-ripple

- Even order equal-ripple filters need output matching towards 50Ω for precise results. Example:

Kuroda's Identities

- Filters implemented with the Richards' transformation have certain disadvantages in terms of practical use
- Kuroda's Identities/Transformations can eliminate some of these disadvantages
- We use additional line sections to obtain systems that are easier to implement in practice
- The additional line sections are called unit elements and have lengths of $\lambda / 8$ at the desired cutoff frequency $\left(\omega_{c}\right)$ thus being commensurate with the stubs implementing the inductors and capacitors.

Kuroda's Identities

- Kuroda's Identities perform any of the following operations:
- Physically separate transmission line stubs
- Transform series stubs into shunt stubs, or vice versa
- Change impractical characteristic impedances into more realizable values ($\sim 50 \Omega$)

Kuroda's Identities

- 4 circuit equivalents (a, b)
- each box represents a unit element, or transmission line, of the indicated characteristic impedance and length $\left(\lambda / 8\right.$ at $\left.\omega_{c}\right)$. The inductors and capacitors represent short-circuit and open-circuit stubs $\frac{Z_{1}}{n^{2}}$

(a)

(b)

Kuroda's Identities

- 4 circuit equivalents (c,d)
- each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda / 8$ at ω_{c}). The inductors and capacitors represent short-circuit and open-circuit stubs

(d)

Kuroda's Identities

- In all Kuroda's Identities:
- n :

$$
n^{2}=1+\frac{Z_{2}}{Z_{1}}
$$

- The inductors and capacitors represent shortcircuit and open-circuit stubs resulted from Richards' transformation ($\lambda / 8$ at ω_{c}).
- Each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda / 8$ at ω_{c}).

First Kuroda's Identity

Figure 8.35

First Kuroda's Identity - Proof

- ABCD matrices, L4

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ Y & 1\end{array}\right] \quad\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}\cos \beta \cdot l & j \cdot Z_{0} \cdot \sin \beta \cdot l \\ j \cdot Y_{0} \cdot \sin \beta \cdot l & \cos \beta \cdot l\end{array}\right]$

First Kuroda's Identity - Proof

$$
\begin{aligned}
& \Omega=\tan \beta \cdot l \\
& \cos \beta \cdot l=\frac{1}{\sqrt{1+\Omega^{2}}} \quad \sin \beta \cdot l=\frac{\Omega}{\sqrt{1+\Omega^{2}}} \\
& Z_{i n, o c}=-j \cdot Z_{2} \cdot \cot \beta \cdot l=-j \cdot \frac{Z_{2}}{\Omega}
\end{aligned}
$$

$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}1 \cdot \Omega & 0 \\ \frac{j \cdot \Omega}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}\frac{1}{\sqrt{1+\Omega^{2}}} & j \cdot Z_{1} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} \\ j \cdot \frac{1}{Z_{1}} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} & \frac{1}{\sqrt{1+\Omega^{2}}}\end{array}\right]$
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & 0 \\ \frac{j \cdot \Omega}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot Z_{1} \\ \frac{j \cdot \Omega}{Z_{1}} & 1\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot Z_{1} \\ j \cdot \Omega \cdot\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}\end{array}\right]$

First Kuroda's Identity - Proof

First Kuroda's Identity - Proof

$$
\begin{aligned}
& \Omega=\tan \beta \cdot l \\
& \cos \beta \cdot l=\frac{1}{\sqrt{1+\Omega^{2}}} \quad \sin \beta \cdot l=\frac{\Omega}{\sqrt{1+\Omega^{2}}}
\end{aligned}
$$

$$
Z_{i n, s c}=j \cdot\left(\frac{Z_{1}}{n^{2}}\right) \cdot \tan \beta \cdot l=\frac{j \cdot \Omega \cdot Z_{1}}{n^{2}}
$$

Unit
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}\frac{\text { element }}{1} & \frac{Z_{2}}{\sqrt{1+\Omega^{2}}} \\ j \cdot \frac{\Omega}{n^{2}} \cdot \frac{n^{2}}{\sqrt{1+\Omega^{2}}} \\ j \cdot \frac{\Omega}{Z_{2}} \cdot \frac{\Omega}{\sqrt{1+\Omega^{2}}} & \frac{1}{\sqrt{1+\Omega^{2}}}\end{array}\right] \cdot\left[\begin{array}{cc}1 & \frac{j \cdot \Omega \cdot Z_{1}}{n^{2}} \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot \frac{Z_{2}}{n^{2}} \\ \frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & j \cdot \Omega \cdot \frac{Z_{1}}{n^{2}} \\ 0 & 1\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}1 & j \cdot \frac{\Omega}{n^{2}} \cdot\left(Z_{1}+Z_{2}\right) \\ \frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}\end{array}\right]$

First Kuroda's Identity - Proof

- First circuit

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}
1 & j \cdot \Omega \cdot Z_{1} \\
j \cdot \Omega \cdot\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}
\end{array}\right]
$$

- Second circuit

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\frac{1}{\sqrt{1+\Omega^{2}}} \cdot\left[\begin{array}{cc}
1 & j \cdot \frac{\Omega}{n^{2}} \cdot\left(Z_{1}+Z_{2}\right) \\
\frac{j \cdot \Omega \cdot n^{2}}{Z_{2}} & 1-\Omega^{2} \cdot \frac{Z_{1}}{Z_{2}}
\end{array}\right]
$$

- Results are identical if we choose

$$
n^{2}=1+\frac{Z_{2}}{Z_{1}}
$$

- The other 3 identities can be proved in the same way

(Same) Example

- Low-pass filter $4^{\text {th }}$ order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
- $\mathrm{g} 1=0.7654=\mathrm{L} 1$
- $\mathrm{g} 2=1.8478=\mathrm{C}_{2}$
- $\mathrm{g} 3=1.8478=\mathrm{L} 3$
- $94=0.7654=C_{4}$
- g5 = 1 (does not need supplemental impedance matching - required only for even order equal-ripple filters)

Example

- Apply Richards's transformation

- Problems:
- the series stubs would be very difficult to implement in microstrip line form
- in microstrip technology it is preferable to have open-circuit stubs (short-circuit requires a viahole to the ground plane)

Example

- In all 4 Kuroda's Identities we always have a circuit with a series line section (not present in initial circuit):
" we add unit elements ($\mathrm{z}=1, \mathrm{I}=\lambda / 8$) at the ends of the filter (these redundant elements do not affect filter performance since they are matched to $z=1$, both source and load)
- we apply one of the Kuroda's Identities at both ends and continue (add unit ...)
- we can stop the procedure when we have a series line section between all the stubs from Richards' transformation

Example

- Apply:
- Kuroda 2 (L, Z known $\rightarrow C, Z$) on the left side
- Kuroda 1 (C,Z known \rightarrow L,Z) on the right side

Example

- We add another unit element on the right side and apply Kuroda 2 twice

Example

- Impedance scaling (multiply by 50Ω)

Kuroda's Identities - ADS

freq, GHz

Examples

Figure 8.55
Courtesy of LNX Corporation, Salem, N.H.

Examples

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

[^0]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

