Lecture 11 2022/2023

Microwave Devices and Circuits for Radiocommunications

2022/2023

- 2C/1L, MDCR
- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
 - Tuesday 12-14, Online, P8
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

2022/2023

- Laboratory associate professor Radu Damian
 - Tuesday o8-12, II.13 / (o8:10)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 21.02.2022)
 - personal homework

Materials

Course Laboratory Lists

Bonus-uri acumulate (final) Studenti care nu pot intra in examen

MDCR Lecture 1 (pdf, 5.43 MB, en, ss)

MDCR Lecture 2 (pdf, 3.67 MB, en, ss) MDCR Lecture 3 (pdf, 4.76 MB, en, ss) MDCR Lecture 4 (pdf, 5.58 MB, en, se)

Materials

Course Slides

http://rf-opto.etti.tuiasi.ro

Online Exams

Grades

In order to participate at online exams you must get ready following

Exams

Student List

4 A- 11- --- -- --- --- --- --- 1-- 1--

Rese

Photos

Materials

- RF-OPTO
 - http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering",
 Wiley; 4th edition, 2011
 - 1 exam problem Pozar
- Photos
 - sent by email/online exam
 - used at lectures/laboratory

Access

Not customized

Acceseaza ca acest student

Note obtinute

Disciplina	Tip	Data	Descriere	Nota	Puncte Obs					
TW	Tehnologii Web									
	N	17/01/2014	10	-						
	А	17/01/2014	Colocviu Tehnologii Web 2013/2014	10	7.55					
	В	17/01/2014	Laborator Tehnologii Web 2013/2014	9	-					
	D	17/01/2014	Tema Tehnologii Web 2013/2014	9	-					

Online

access to online exams requires the password

received by email

Online

access email/password

Password

received by email

Online exam manual

- The online exam app used for:
 - lectures (attendance)
 - laboratory
 - project
 - examinations

Materials

Other data

Manual examen on-line (pdf, 2.65 MB, ro, ■)
Simulare Examen (video) (mp4, 65 12 MB, ro, ■)

Microwave Devices and Circuits (Englis

Examen online

- always against a timetable
 - long period (lecture attendance/laboratory results)
 - short period (tests: 15min, exam: 2h)

Announcement 23:59 (10/05/2020) Support material 00:05 (11/05/2020) Support material 00:07 (11/05/2020

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for co

Server Time

All exams are based on the server's time zone (it may be different from local time). For reference time on the server is now:

10/05/2020 23:59:16

Online results submission

many numerical values/files

													200											
Schema finala	Rezultate - castig		Fisier justificare calcul (factor andrei)	(ontional)	parmetri	r T2, fisier i parmetri S		Z2	Z 3	Z4	Z5	Z6	Z 7	Ze1	Zo1	Ze2	Zo2	Ze3	Zo3	Ze4	Zo4	Ze5	Zo5	Ze6
86 - 5428 - 259		86 - 5428 - 261	86 - 5428 - 316	-	86 - 5428 - 314	86 - 5428 - 315	148.33	155.88	202.12	164.35	180.91	30.29	185.19	79.9	37	68.89	45.14	61.83	45.05	57.97	46.02	61.85	45.05	68.8
The second secon	5622 -	86 - 5622 - 261	86 - 5622 - 316	5622 -	5622 -	86 - 5622 - 315	26.97	153.5	34.64	35.79	55.56	26.212	10.693	0	0	0	0	0	0	0	0	0	0	0
86 - 5488 - 259	86 - 5488 - 260	86 - 5488 - 261	86 - 5488 - 316	86 - 5488 - 262	86 - 5488 - 314	86 - 5488 - 315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
86 - 5391 - 259		86 - 5391 - 261	86 - 5391 - 316	-		1.50	50	50	50	50	50	50	50	70.14	40.39	61.85	44.59	55.7	45.2	54.89	45.38	58.65	45.8	70.0
86 - 5664 - 259		86 - 5664 - 261	86 - 5664 - 316	-	86 - 5664 - 314	86 - 5664 - 315	168.02	150.5	178.28	133.75	92.12	121.67	144.48	94.36	36.19	70.77	42.56	65.69	42.05	55.17	42.29	65.59	42.05	70.7
The second secon	5665 -	86 - 5665 - 261	86 - 5665 - 316	5	The state of the s	86 - 5665 - 315	162.2	80.8	209.2	140.85	135.1	183.7	167.6	94.58	36.15	78.16	39.77	65.57	45.05	65.57	45.05	78.16	39.77	94.5
86 - 5433 - 259	1700 may 100	86 - 5433 - 261	86 - 5433 - 316	-	86 - 5433 - 314	86 - 5433 - 315	165.138	106.228	226.157	130.134	72.71	180.177	164.616	101.36	36.11	77.22	42.49	68.02	45.62	60	45.42	68.02	45.62	77.2
86 - 5608 - 259	86 - 5608 - 260	86 - 5608 - 261	86 - 5608 - 316	5.	86 - 5608 - 314	86 - 5608 - 315	150.84	152.5	30.94	32.37	54.36	19.837	29.85	64.14	40.145	54.32	46.32	53.8	46.7	53.8	46.7	54.32	46.32	54.9
86 - 5555 - 259	86 - 5555 - 260	86 - 5555 - 261	86 - 5555 - 316	7.	86 - 5555 - 314	86 - 5555 - 315	168.001	150.288	178.399	133.115	92.491	121.257	144,126	97.05	36.16	71.13	43.09	65.45	42.12	55.66	42.18	65.45	42.12	71.

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission

Recap

General theory

Microwave Network Analysis

Scattering matrix – S

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$|S_{21}|^2 = \frac{Power\ in\ Z_0\ load}{Power\ from\ Z_0\ source}$$

- a,b
 - information about signal power AND signal phase
- S_{ij}
 - network effect (gain) over signal power including phase information

Impedance Matching

The Smith Chart

The Smith Chart

Impedance matching

Impedance Matching with lumped elements (L Networks)

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers?

The Smith Chart, reflection coefficient, impedance matching

The Smith Chart, matching, $Z_L = Z_o$

The Smith Chart, matching,

$$Z_{L}\neq Z_{o}$$
, $Z_{L}=Z_{o}$

- The matching sections needed to move
 - $\Gamma_{\rm L}$ in $\Gamma_{\rm o}$
- Γ_o in Γ_Lare identical. They differ only by the **order** in which the elements are introduced into the matching circuit
- As a result, we can use in match design the same:
 - methods
 - formulae

Impedance Matching

Impedance Matching with Stubs

Smith chart, r=1 and g=1

Case 1, Shunt Stub

Shunt Stub

Analytical solution, usage

$$\cos(\varphi + 2\theta) = -|\Gamma_S|$$
$$\Gamma_S = 0.593 \angle 46.85^{\circ}$$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_S|}{\sqrt{1 - |\Gamma_S|^2}}$$

$$|\Gamma_S| = 0.593; \quad \varphi = 46.85^{\circ} \quad \cos(\varphi + 2\theta) = -0.593 \Rightarrow (\varphi + 2\theta) = \pm 126.35^{\circ}$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - *** solution (46.85° + 2\theta) = +126.35° θ = +39.7° Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 |\Gamma_s|^2}} = -1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

■ "-" solution

$$(46.85^{\circ} + 2\theta) = -126.35^{\circ}$$
 $\theta = -86.6^{\circ}(+180^{\circ}) \rightarrow \theta = 93.4^{\circ}$
 $\text{Im } y_s = \frac{+2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = +1.472$ $\theta_{sp} = \tan^{-1}(\text{Im } y_s) = 55.8^{\circ}$

Microwave Amplifiers

Power / Matching

 Two ports in which matching influences the power transfer

Microwave Filters

Assignment

 this structure is frequently encountered in radiocommunication systems

Insertion loss method

$$P_{LR} = \frac{P_S}{P_L} = \frac{1}{1 - \left|\Gamma(\omega)\right|^2}$$

- $|\Gamma(\omega)|^2$ is an even function of ω

$$\left|\Gamma(\omega)\right|^{2} = \frac{M(\omega^{2})}{M(\omega^{2}) + N(\omega^{2})}$$

$$P_{LR} = 1 + \frac{M(\omega^{2})}{N(\omega^{2})}$$

 Choosing M and N polynomials appropriately leads to a filter with a completely specified frequency response

Insertion loss method

O John Wiley & Sons, Inc. All rights reserved.

- We control the power loss ratio/attenuation introduced by the filter:
 - in the passband (pass all frequencies)
 - in the stopband (reject all frequencies)

Filter specifications

- Attenuation
 - in passband
 - in stopband
 - most often in dB
- Frequency range
 - passband
 - stopband
 - cutoff frequency ω₁' usually normalized
 (= 1)

Insertion loss method

- We choose the right polynomials to design an low-pass filter (prototype)
- The low-pass prototype are then converted to the desired other types of filters
 - low-pass, high-pass, bandpass, or bandstop

Maximally Flat/Equal ripple LPF Prototype

Figure 8.21
© John Wiley & Sons, Inc. All rights reserved.

Maximally flat filter prototypes

Attenuation versus normalized frequency for maximally flat filter prototypes

Prototype Filters

Prototype Filters

- Prototype filters are:
 - Low-Pass Filters (LPF)
 - cutoff frequency $\omega_o = 1 \text{ rad/s (} f_o = 0.159 \text{ Hz)}$
 - connected to a source with $R = 1\Omega$
- The number of reactive elements (L/C) is the order of the filter (N)
- Reactive elements are alternated: series L / shunt C
- There two prototypes with the same response, a prototype beginning with a shunt C element, and a prototype beginning with a series L element

Maximally Flat LPF Prototype

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> ₄	<i>g</i> ₅	<i>g</i> ₆	<i>g</i> 7	<i>g</i> ₈	<i>g</i> 9	g ₁₀	g ₁₁
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

Example

Design a 3rd order bandpass filter with o.5 dB ripples in passband. The center frequency of the filter should be 1 GHz. The fractional bandwidth of the passband should be 10%, and the impedance 50Ω.

LPF Prototype

- o.5dB equal-ripple table or design formulas:
 - g1 = 1.5963 = L1/C3,
 - g2 = 1.0967 = C2/L4,
 - g3 = 1.5963 = L3/C5,
 - g4=1.000 = R_L

LPF Prototype

• $\omega_0 = 1 \text{ rad/s } (f_0 = \omega_0 / 2\pi = 0.159 \text{ Hz})$

Continue

Impedance and Frequency Scaling

- After computing prototype filter's elements:
 - Low-Pass Filters (LPF)
 - cutoff frequency $\omega_0 = 1 \text{ rad/s (f}_0 = 0.159 \text{ Hz)}$
 - connected to a source with $R = 1\Omega$
- component values can be scaled in terms of impedance and frequency

Impedance and Frequency Scaling

- LPF Prototype is only used as an intermediate step
 - Low-Pass Filter (LPF)
 - cutoff frequency $\omega_0 = 1 \text{ rad/s (f}_0 = 0.159 \text{ Hz)}$
 - connected to a source with $R = 1\Omega$

Impedance Scaling

To design a filter which will work with a source resistance of R_o we multiplying all the impedances of the prototype design by R_o (" ' " denotes scaled values)

$$R'_s = R_0 \cdot (R_s = 1)$$
 $R'_L = R_0 \cdot R_L$ $C' = \frac{C}{R_0}$

Frequency Scaling

- changing the cutoff frequency (fig. b)
- changing the type (for example LPF → HPF fig. c) requires also conversion

Frequency Scaling

To change the cutoff frequency of a low-pass prototype from unity to ω_c we apply a variable substitution

$$\omega \leftarrow \frac{\omega}{\omega_c}$$

Frequency Scaling

 To change the cutoff frequency of a low-pass prototype we apply a variable substitution:

$$\omega \leftarrow \frac{\omega}{\omega_c}$$

 Equivalent to the widening of the power loss filter response

$$P_{LR}'(\omega) = P_{LR}\left(\frac{\omega}{\omega_c}\right)$$

$$j \cdot X_k = j \cdot \frac{\omega}{\omega_c} \cdot L_k = j \cdot \omega \cdot L_k'$$
 $j \cdot B_k = j \cdot \frac{\omega}{\omega_c} \cdot C_k = j \cdot \omega \cdot C_k'$

Frequency Scaling LPF -> LPF

New element values for frequency scaling:

$$L'_k = \frac{L_k}{\omega_c} \qquad \qquad C'_k = \frac{C_k}{\omega_c}$$

When both impedance and frequency scaling are required:

$$L'_{k} = \frac{R_{0} \cdot L_{k}}{\omega_{c}} \qquad C'_{k} = \frac{C_{k}}{R_{0} \cdot \omega_{c}}$$

Low-pass to high-pass transformation LPF -> HPF

■ Variable substitution for LPF → HPF:

$$\omega \leftarrow -\frac{\omega_c}{\omega}$$

High-pass transformation LPF → HPF

■ Variable substitution for LPF → HPF :

$$\omega \leftarrow -\frac{\omega_c}{\omega}$$

$$j \cdot X_k = -j \cdot \frac{\omega_c}{\omega} \cdot L_k = \frac{1}{j \cdot \omega \cdot C_k'}$$

$$j \cdot B_k = -j \cdot \frac{\omega_c}{\omega} \cdot C_k = \frac{1}{j \cdot \omega \cdot L_k'}$$

Impedance scaling can be included

$$C'_{k} = \frac{1}{R_{0} \cdot \omega_{c} \cdot L_{k}} \qquad L'_{k} = \frac{R_{0}}{\omega_{c} \cdot C_{k}}$$

 In the schematic series inductors must be replaced with series capacitors, and shunt capacitors must be replaced with shunt inductors

Bandpass Transformation LPF -> BPF

■ Variable substitution for LPF → BPF:

$$\omega \leftarrow \frac{\omega_0}{\omega_2 - \omega_1} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \frac{1}{\Delta} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right)$$

 where we use the fractional bandwidth of the passband and the center frequency

$$\Delta = \frac{\omega_2 - \omega_1}{\omega_0} \qquad \qquad \omega_0 = \sqrt{\omega_1 \cdot \omega_2}$$

Bandpass Transformation LPF -> BPF

$$\omega = \omega_0 \to \frac{1}{\Delta} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \frac{1}{\Delta} \left(\frac{\omega_0}{\omega_0} - \frac{\omega_0}{\omega_0} \right) = 0 \qquad \omega = -\omega_0 \to \frac{1}{\Delta} \left(\frac{-\omega_0}{\omega_0} - \frac{\omega_0}{-\omega_0} \right) = 0$$

$$\omega = \omega_1 \to \frac{1}{\Delta} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \frac{1}{\Delta} \left(\frac{\omega_1^2 - \omega_0^2}{\omega_0 \cdot \omega_1} \right) = -1$$

$$\omega = \omega_2 \to \frac{1}{\Delta} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \frac{1}{\Delta} \left(\frac{\omega_2^2 - \omega_0^2}{\omega_0 \cdot \omega_2} \right) = 1$$

Bandpass Transformation LPF -> BPF

$$j \cdot X_{k} = \frac{j}{\Delta} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega} \right) \cdot L_{k} = j \cdot \frac{\omega \cdot L_{k}}{\Delta \cdot \omega_{0}} - j \cdot \frac{\omega_{0} \cdot L_{k}}{\Delta \cdot \omega} = j \cdot \omega \cdot L'_{k} - j \frac{1}{\omega \cdot C'_{k}}$$
$$j \cdot B_{k} = \frac{j}{\Delta} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega} \right) \cdot C_{k} = j \cdot \frac{\omega \cdot C_{k}}{\Delta \cdot \omega_{0}} - j \cdot \frac{\omega_{0} \cdot C_{k}}{\Delta \cdot \omega} = j \cdot \omega \cdot C'_{k} - j \frac{1}{\omega \cdot L'_{k}}$$

 A series inductor in the prototype filter is transformed to a series LC circuit in series

$$L'_{k} = \frac{L_{k}}{\Delta \cdot \omega_{0}} \qquad C'_{k} = \frac{\Delta}{\omega_{0} \cdot L_{k}}$$

 A shunt capacitor in the prototype filter is transformed to a shunt LC circuit in parallel

$$L'_{k} = \frac{\Delta}{C_{k} \cdot \omega_{0}} \qquad C'_{k} = \frac{C_{k}}{\omega_{0} \cdot \Delta}$$

Bandstop Transformation LPF -> BSF

$$\omega \leftarrow -\Delta \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^{-1} \qquad \omega = \omega_0 \to \frac{-\Delta}{\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{-\Delta}{\left(\frac{\omega_0}{\omega_0} - \frac{\omega_0}{\omega_0}\right)} \to \pm \infty$$

Bandstop Transformation LPF -> BSF

$$\omega \leftarrow -\Delta \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^{-1}$$

 A series inductor in the prototype filter is transformed to a shunt LC circuit in series

$$L'_{k} = \frac{\Delta \cdot L_{k}}{\omega_{0}} \qquad C'_{k} = \frac{1}{\omega_{0} \cdot \Delta \cdot L_{k}}$$

 A shunt capacitor in the prototype filter is transformed to a series LC circuit in parallel

$$L'_{k} = \frac{1}{\Delta \cdot \omega_{0} \cdot C_{k}} \qquad C'_{k} = \frac{\Delta \cdot C_{k}}{\omega_{0}}$$

Summary of Prototype Filter Transformations

Low-pass	High-pass	Bandpass	Bandstop
${iggle}_L$	$\frac{\bigcap}{\bigcup_{\omega_c L}} \frac{1}{\omega_c L}$	$\frac{\sum_{k=1}^{\infty} \frac{L}{\omega_0 \Delta}}{\sum_{k=1}^{\infty} \frac{\Delta}{\omega_0 L}}$	$\frac{L\Delta}{\omega_0} \left\{ \frac{1}{\omega_0 L\Delta} \right\}$
$\frac{\bigcirc}{\bigcirc}$ C	$\begin{cases} \frac{1}{\omega_c C} \end{cases}$	$\frac{\Delta}{\omega_0 C} \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\} \frac{C}{\omega_0 \Delta}$	$\frac{\sum_{\omega_0 C\Delta} \frac{1}{\omega_0 C\Delta}}{\sum_{\omega_0} \frac{C\Delta}{\omega_0}}$

Example

Design a 3rd order bandpass filter with 0.5 dB ripples in passband. The center frequency of the filter should be 1 GHz. The fractional bandwidth of the passband should be 10%, and the impedance 50Ω.

$$\omega_0 = 2 \cdot \pi 1 GHz = 6.283 \cdot 10^9 \, rad / s$$

$$\Delta = 0.1$$

LPF Prototype

- o.5dB equal-ripple table or design formulas:
 - g1 = 1.5963 = L1/C3,
 - g2 = 1.0967 = C2/L4,
 - g3 = 1.5963 = L3/C5,
 - g4=1.000 = R_L

LPF Prototype

• $\omega_0 = 1 \text{ rad/s } (f_0 = \omega_0 / 2\pi = 0.159 \text{ Hz})$

Bandpass Transformation / BPF

$$\omega_0 = 2 \cdot \pi \cdot 1$$
 $GHz = 6.283 \cdot 10^9$ rad/s $\Delta = \frac{\Delta \omega}{\omega_0} = \frac{\Delta f}{f_0} = 0.1$ $R_0 = 50 \Omega$ $g1 = 1.5963 = L1$, $g3 = 1.5963 = L3$, $g2 = 1.0967 = C2$, $g4 = 1.000 = R_L$

$$L'_{1} = \frac{L_{1} \cdot R_{0}}{\Delta \cdot \omega_{0}} = 127.0 \, nH$$
 $C'_{1} = \frac{\Delta}{\omega_{0} \cdot L_{1} \cdot R_{0}} = 0.199 \, pF$

$$L_2' = \frac{\Delta \cdot R_0}{\omega_0 \cdot C_2} = 0.726 \, nH \qquad \qquad C_2' = \frac{C_2}{\Delta \cdot \omega_0 \cdot R_0} = 34.91 \, pF$$

$$L_3' = \frac{L_3 \cdot R_0}{\Delta \cdot \omega_0} = 127.0 \, nH$$
 $C_3' = \frac{\Delta}{\omega_0 \cdot L_3 \cdot R_0} = 0.199 \, pF$

ADS

Microwave Filters Implementation

Microwave Filters Implementation

- The lumped-element (L, C) filter design generally works well only at low frequencies (RF):
 - lumped-element inductors and capacitors are generally available only for a limited range of values, and can be difficult to implement at microwave frequencies
 - difficulty to obtain the (very low) required tolerance for elements

Impedance seen at the input of a line loaded with Z_I

$$Z_{in} = Z_0 \cdot \frac{Z_L + j \cdot Z_0 \cdot \tan \beta \cdot l}{Z_0 + j \cdot Z_L \cdot \tan \beta \cdot l}$$

- We prefer the load impedance to be:
 - open circuit ($Z_L = \infty$) $Z_{in,oc} = -j \cdot Z_0 \cdot \cot \beta \cdot l$
 - short circuit ($Z_1 = o$) $Z_{in,sc} = j \cdot Z_0 \cdot \tan \beta \cdot l$
- Input impedance is:
 - capacitive $Z_{in,oc} = j \cdot X_C = \frac{1}{j \cdot B_C}$ $Z_0 \leftrightarrow \frac{1}{C} \tan \beta \cdot l \leftrightarrow \omega$
 - inductive $Z_{in.sc} = j \cdot X_L \qquad Z_0 \leftrightarrow L \quad \tan \beta \cdot l \leftrightarrow \omega$

Variable substitution

$$\Omega = \tan \beta \cdot l = \tan \left(\frac{\omega \cdot l}{v_p} \right)$$

- With this variable substitution we define:
 - reactance of an inductor

$$j \cdot X_L = j \cdot \Omega \cdot L = j \cdot L \cdot \tan \beta \cdot l$$

susceptance of a capacitor

$$j \cdot B_C = j \cdot \Omega \cdot C = j \cdot C \cdot \tan \beta \cdot l$$

• The equivalent filter in Ω has a cutoff frequency at:

$$\Omega = 1 = \tan \beta \cdot l \quad \rightarrow \quad \beta \cdot l = \frac{\pi}{4} \quad \rightarrow \quad l = \frac{\lambda}{8}$$

 allows implementation of the inductors and capacitors with lines after the transformation of the LPF prototype to the required type (LPF/HPF/BPF/BSF)

- By choosing the open-circuited or short-circuited lines to be $\lambda/8$ at the desired cutoff frequency (ω_c) and the corresponding characteristic impedances (L/C from LPF prototype) we will obtain at frequencies around ω_c a behavior similar to that of the prototype filter.
 - At frequencies far from ω_c the behavior of the filter will no longer be identical to that of the prototype (in specific situations the correct behavior must be **verified**)
 - Frequency scaling is simplified: choosing the appropriate physical length of the line to have the electrical length λ/8 at the desired cutoff frequency
- All lines will have equal electrical lengths (λ/8) and thus comparable physical lengths, so the lines are called commensurate lines

- At the frequency $\omega = 2 \cdot \omega_c$ the lines will be $\lambda/4$ long $l = \frac{\lambda}{4} \Rightarrow \beta \cdot l = \frac{\pi}{2} \Rightarrow \tan \beta \cdot l \rightarrow \infty$
- an supplemental attenuation pole will occur at $2 \cdot \omega_c$ (LPF):
 - inductances (usually in series) $Z_{in,sc} = j \cdot Z_0 \cdot \tan \beta \cdot l \rightarrow \infty$
 - capacitances (usually shunt) $Z_{in,oc} = -j \cdot Z_0 \cdot \cot \beta \cdot l \rightarrow 0$

Richards' Transformation

- the periodicity of tan function implies the periodicity of the filter implemented with lines
 - the filter response will be repeated every $4 \cdot \omega_c$

$$\tan(\alpha + \pi) = \tan \alpha$$

$$\left. \beta \cdot l \right|_{\omega = \omega_c} = \frac{\pi}{4} \quad \Rightarrow \quad \frac{\omega_c \cdot l}{v_p} = \frac{\pi}{4} \quad \Rightarrow \quad \pi = \frac{\left(4 \cdot \omega_c \right) \cdot l}{v_p}$$

$$Z_{in}(\omega) = Z_{in}(\omega + 4 \cdot \omega_c) \implies P_{LR}(\omega) = P_{LR}(\omega + 4 \cdot \omega_c)$$

$$P_{LR}(4 \cdot \omega_c) = P_{LR}(0) \qquad P_{LR}(3 \cdot \omega_c) = P_{LR}(-\omega_c) \qquad P_{LR}(5 \cdot \omega_c) = P_{LR}(\omega_c)$$

- Low-pass filter 4th order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
 - g1 = 0.7654 = L1
 - $q_2 = 1.8478 = C_2$
 - $q_3 = 1.8478 = L_3$
 - g4 = 0.7654 = C4
 - g5 = 1 (does not need supplemental impedance matching – required only for even order equal-ripple filters)

LPF Prototype

Lumped elements

$$\omega_c = 2 \cdot \pi \cdot 4 \, GHz = 2.5133 \cdot 10^{10} \, rad \, / \, s$$

$$g1 = 0.7654 = L1,$$

$$g_2 = 1.8478 = C_2,$$

$$L_1' = \frac{R_0 \cdot L_1}{\omega_c} = 1.523 \, nH$$

$$L_3' = \frac{R_0 \cdot L_3}{\omega_c} = 3.676 \, nH$$

$$g_3 = 1.8478 = L_3$$

$$g4 = 0.7654 = C4$$

$$g_5 = 1 = RL$$

$$C_2' = \frac{C_2}{R_0 \cdot \omega_c} = 1.470 \ pF$$

$$C_4' = \frac{C_4}{R_0 \cdot \omega_c} = 0.609 \ pF$$

Lumped elements – ADS

Richards' Transformation

- LPF Prototype parameters:
 - g1 = 0.7654 = L1
 - $g_2 = 1.8478 = C_2$
 - g₃ = 1.8478 = L₃
 - g4 = 0.7654 = C4
- Normalized line impedances

$$z_1 = 0.7654 = series / short circuit$$

$$z_2 = 1/1.8478 = 0.5412 = shunt/open circuit$$

$$z_3 = 1.8478 = series / short circuit$$

$$z_4 = 1/0.7654 = 1.3065 = shunt/open circuit$$

- Impedance scaling by multiplying with $Zo = 50\Omega$
- All lines must have the length equal to λ/8 (electrical length E = 45°) at 4GHz

$$Z_0 \leftrightarrow \frac{1}{C}$$

$$Z_0 \leftrightarrow L$$

Richards' Transformation – ADS

Richards' Transformation

- Filters implemented with Richards' Transformation
 - beneficiate from the supplemental pole at $2 \cdot \omega_c$
 - have the major disadvantage of frequency periodicity, a supplemental non-periodic LPF must be inserted if needed

Equal-ripple prototype

- For even N order of the filter (N = 2, 4, 6, 8 ...) equal-ripple filters must closed by a nonstandard load impedance g_{N+1} ≠ 1
- If the application doesn't allow this, supplemental impedance matching is required (quarter-wave transformer, binomial ...) to g_L = 1

$$g_{N+1} \neq 1 \rightarrow R \neq R_0 \quad (50\Omega)$$

Observation: even order equal-ripple

- Same filter, 3dB equal-ripple
- 3dB equal-ripple tables or formulas:
 - g1 = 3.4389 = L1
 - $g_2 = 0.7483 = C_2$
 - g3 = 4.3471 = L3
 - q4 = 0.5920 = C4
 - $g_5 = 5.8095 = R_1$
- Line impedances
 - $Z_1 = 3.4389.50\Omega = 171.945\Omega = series / short circuit$
 - $Z_2 = 50\Omega / 0.7483 = 66.818\Omega = \text{shunt / open circuit}$
 - $Z_3 = 4.3471.50\Omega = 217.355\Omega = \text{series / short circuit}$
 - $Z_4 = 50\Omega / 0.5920 = 84.459\Omega = \text{shunt / open circuit}$
 - RL = $5.8095.50\Omega$ = 295.475Ω = load

Even order equal-ripple – ADS

Observation: even order equal-ripple

Even order equal-ripple filters need output matching towards 50Ω for precise results. Example:

- Filters implemented with the Richards' transformation have certain disadvantages in terms of practical use
- Kuroda's Identities/Transformations can eliminate some of these disadvantages
- We use additional line sections to obtain systems that are easier to implement in practice
- The additional line sections are called unit elements and have lengths of λ / 8 at the desired cutoff frequency (ω_c) thus being commensurate with the stubs implementing the inductors and capacitors.

- Kuroda's Identities perform any of the following operations:
 - Physically separate transmission line stubs
 - Transform series stubs into shunt stubs, or vice versa
 - Change impractical characteristic impedances into more realizable values (~50Ω)

- 4 circuit equivalents (a,b)
 - each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c). The inductors and capacitors represent short-circuit and open-circuit stubs $\frac{Z_1}{n^2}$

- 4 circuit equivalents (c,d)
 - each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c). The inductors and capacitors represent short-circuit and open-circuit stubs

- In all Kuroda's Identities:
 - **n**:

$$n^2 = 1 + \frac{Z_2}{Z_1}$$

- The inductors and capacitors represent short-circuit and open-circuit stubs resulted from Richards' transformation ($\lambda/8$ at ω_c).
- Each box represents a unit element, or transmission line, of the indicated characteristic impedance and length ($\lambda/8$ at ω_c).

First Kuroda's Identity

Figure 8.35

Sons, Inc. All rights reserved.

ABCD matrices, L₄

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Y & 1 \end{bmatrix} \qquad \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \cos \beta \cdot l & j \cdot Z_0 \cdot \sin \beta \cdot l \\ j \cdot Y_0 \cdot \sin \beta \cdot l & \cos \beta \cdot l \end{bmatrix}$$

$$\Omega = \tan \beta \cdot l$$

$$\cos \beta \cdot l = \frac{1}{\sqrt{1 + \Omega^2}} \quad \sin \beta \cdot l = \frac{\Omega}{\sqrt{1 + \Omega^2}}$$

$$Z_{in,oc} = -j \cdot Z_2 \cdot \cot \beta \cdot l = -j \cdot \frac{Z_2}{\Omega}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{j \cdot \Omega}{Z_2} & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{1 + \Omega^2}} & j \cdot Z_1 \cdot \frac{\Omega}{\sqrt{1 + \Omega^2}} \\ j \cdot \frac{1}{Z_1} \cdot \frac{\Omega}{\sqrt{1 + \Omega^2}} & \frac{1}{\sqrt{1 + \Omega^2}} \end{bmatrix}$$

$$j \cdot Z_1 \cdot \frac{\Omega}{\sqrt{1 + \Omega^2}}$$

$$\frac{1}{\sqrt{1 + \Omega^2}}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & 0 \\ \frac{j \cdot \Omega}{Z_2} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & j \cdot \Omega \cdot Z_1 \\ \frac{j \cdot \Omega}{Z_1} & 1 \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & j \cdot \Omega \cdot Z_1 \\ j \cdot \Omega \cdot \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right) & 1 - \Omega^2 \cdot \frac{Z_1}{Z_2} \end{bmatrix}$$

S.C. series stub
$$Z_1/n^2$$
 l Z_2/n^2

$$\Omega = \tan \beta \cdot l$$

$$\cos \beta \cdot l = \frac{1}{\sqrt{1 + \Omega^2}} \qquad \sin \beta \cdot l = \frac{\Omega}{\sqrt{1 + \Omega^2}}$$

$$\sin \beta \cdot l = \frac{\Omega}{\sqrt{1+\Omega}}$$

$$Z_{in,sc} = j \cdot \left(\frac{Z_1}{n^2}\right) \cdot \tan \beta \cdot l = \frac{j \cdot \Omega \cdot Z_1}{n^2}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{1+\Omega^2}} & j \cdot \frac{Z_2}{n^2} \cdot \frac{\Omega}{\sqrt{1+\Omega^2}} \\ j \cdot \frac{n^2}{Z_2} \cdot \frac{\Omega}{\sqrt{1+\Omega^2}} & \frac{1}{\sqrt{1+\Omega^2}} \end{bmatrix} \cdot \begin{bmatrix} 1 & \frac{j \cdot \Omega \cdot Z_1}{n^2} \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & j \cdot \Omega \cdot \frac{Z_2}{n^2} \\ \frac{j \cdot \Omega \cdot n^2}{Z_2} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & j \cdot \Omega \cdot \frac{Z_1}{n^2} \\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & j \cdot \frac{\Omega}{n^2} \cdot (Z_1 + Z_2) \\ \frac{j \cdot \Omega \cdot n^2}{Z_2} & 1 - \Omega^2 \cdot \frac{Z_1}{Z_2} \end{bmatrix}$$

First circuit

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & j \cdot \Omega \cdot Z_1 \\ j \cdot \Omega \cdot \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right) & 1 - \Omega^2 \cdot \frac{Z_1}{Z_2} \end{bmatrix}$$

Second circuit

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \frac{1}{\sqrt{1+\Omega^2}} \cdot \begin{bmatrix} 1 & j \cdot \frac{\Omega}{n^2} \cdot (Z_1 + Z_2) \\ \frac{j \cdot \Omega \cdot n^2}{Z_2} & 1 - \Omega^2 \cdot \frac{Z_1}{Z_2} \end{bmatrix}$$

Results are identical if we choose

$$n^2 = 1 + \frac{Z_2}{Z_1}$$

The other 3 identities can be proved in the same way

(Same) Example

- Low-pass filter 4th order, 4 GHz cutoff frequency, maximally flat design (working with 50Ω source and load)
- maximally flat table or formulas:
 - g1 = 0.7654 = L1
 - $q_2 = 1.8478 = C_2$
 - q3 = 1.8478 = L3
 - g4 = 0.7654 = C4
 - g5 = 1 (does not need supplemental impedance matching – required only for even order equal-ripple filters)

Apply Richards's transformation

Problems:

- the series stubs would be very difficult to implement in microstrip line form
- in microstrip technology it is preferable to have open-circuit stubs (short-circuit requires a viahole to the ground plane)
- the 4 stubs are physically connected at the same point, an implementation that eliminates/reduces the coupling between these lines is impossible
- not the case here, but sometimes the normalized impedances are much different from 1. Most circuit technologies are designed for 50Ω lines

- In all 4 Kuroda's Identities we always have a circuit with a series line section (not present in initial circuit):
 - we add unit elements (z = 1, $l = \lambda/8$) at the ends of the filter (these redundant elements do not affect filter performance since they are matched to z = 1, both source and load)
 - we apply one of the Kuroda's Identities at both ends and continue (add unit ...)

 we can stop the procedure when we have a series line section between all the stubs from Richards' transformation

- Apply:
 - Kuroda 2 (L,Z known \rightarrow C,Z) on the left side
 - Kuroda 1 (C,Z known \rightarrow L,Z) on the right side

 We add another unit element on the right side and apply Kuroda 2 twice

Impedance scaling (multiply by 50Ω)

Kuroda's Identities – ADS

Figure 8.55 Courtesy of LNX Corporation, Salem, N.H.

Figure 8.55
Courtesy of LNX Corporation, Salem, N.H.

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro